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Dynamics of Fractal Structures 

R. O r b a c h  i 

Dilation symmetry, as opposed to the degenerate limit of translation symmetry, 
requires (at least) three dimensionalities to contain a physical description: d, the 
Euclidean (or embedding) dimension; d, the Haussdorf (or fractal) dimension; 
d, the fracton (or spectral) dimension. The dynamical properties of percolating 
networks are examined in this contexL The vibrational density of states, N(co), 
is calculated, and shown to be propertional to co d i in the phonon, or long- 
length-scale regime. A crossover is found at a frequency coc, propotional to 
P - P c ,  where p is the bond occupancy probability, and Pc the critical 
percolation concentration. At short length scales, N(co) is proportional to co~-J, 
and the excitations are termed fractons. An effective mdium approximation 
(EMA) calculation of the vibration density of states exhibits a rapid rise in 
N(co) in the vicinity of co c. We suggest that this overall behavior has relevance 
to the vibrational properties of amorphous materials. The far infrared 
absorption spctra of a number of glasses and amorphous Ge exhibit structures 
which appear similar to the calculated EMA N(co). This lends credence to our 
previous analysis based solely on the thermal properties. We use the EMA to 
compute (r2(t)) for a percolating network, and thence calculate the diffusion 
constant D(t). For short times, we obtain the Webman EMA result, 
D(t) oc t-~/2, with a smooth crossover to a constant value for long times. The 
vibrational dispersion curves are calculated within EMA. The velocity of  sound 
v s is found to vary as (p  - Pc) 1/2 in the phonon (small wave vector q) regime. 
When q ~ qc, (qcvs = co) for p near Pc, the dispersion curves flatten and bend 
over, then rise again with co oc q2, looking somewhat "roton"-like. For q > qc, 
the "damping" becomes very large, so that the plane wave character of the 
solution fails. This peculiar double-valued structure in co(q) is responsible for 
the rapid rise in N(co) near coc, and not the behavior of the diffusion constant. 
Our results suggest the following EMA values at d = 3 in the fracton regime: 
d = 1, d =  2, or 0 = 2 where D(r) oc r -~ 
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1. INTRODUCTION 

It is now generally recognized that self-similar fractal structures (1) require (at 
least) three dimensionalities for their description: the embedding Euclidean 
dimension d, the Haussdorf (fractal (1)) dimension d, and the fracton (2) 
(spectral) dimension d. The latter two quantities collapse to the first as one 
passes from the self-similar regime which exhibits dilation symmetry ~3) to the 
Euclidean regime where the system is translationally symmetric. The 
percolating network is an ideal system to study this "crossover" between the 
two very different regimes. A characteristic length scale is set by the 
percolation correlation length ~p oc ( p -  pc) -v where p is the site or bond 
concentration, and Pc the critical percolation concentration. The exponent 
v = 4/3 exactly (4) at d = 2, and is approximately 0.84 at d = 3. ~5) For length 
scales longer than ~p, the system is Euclidean, while for length scales shorter 
than ~p, it is a self-similar fractal structure, t6) 

Many physical systems are thought to map onto a percolating network. 
For example, de Gennes (7) uses the mapping for a description of gels. We 
have claimd ~8) that the vibrational properties of cross-linked polymers, 
glasses, and irradiated quartz exhibit properties which are not dissimilar 
from those calculated for the percolating network. We based this claim 
originally on a scaling argument. The purpose of this paper is to use our 
recent effective medium approximation (EMA) calculations of the 
vibrational properties of the percolating network as a model for amorphous 
materials. These calculations show that the low-frequency (long-length-scale) 
vibrational excitations are phonon like with a density of states proportional 
to COd-1. A crossover frequency exists (itself proportional to p - - P c ) ,  c~ 
corresponding to the length scale ~p. As co increases through coc, a rapid rise 
in N(co) takes place, with N(co) then "saturating" to a constant value (=for 
2 ~ d ~  4), corresponding to the fraction regime where (2) N(co) oc cod-1 
(within EMA, d = 1 for 2 ~ d ~ 4). This shape for N(co) is similar to that 
extracted from specific heat measurements on epoxy-resin, (9) and from far 
infrared absorption measurements on amorphous GeO2, B203, and SiO 2, 
and on O1) a-Ge. (1~ 

We explore the physical reasons why N(co) behaves in this manner by 
first calculating D(t), the time-dependent diffusion constant, within EMA. 
We show that D(t) crosses over smoothly from the fractal (short-time) 
regime result of Webman, t12) D(t)oz t -~/2, to a constant in the Euclidean 
(long-time) regime. The unusual shape [the rapid rise in N(co)] at coc cannot 
then be blamed on quantities related to the diffusion constant (e.g., the 
effective bulk modulus ~3'14)) but rather must have a different origin. We 
report the results of an EMA calculation of the dispersion law for vibrations 
on a percolating network. We find a phononlike behavior at long length 
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scales, co = v~q where the velocity of sound v s oc p - Pc. For large q, such 
that 09 ~ coc and p ~ Pc, the dispersion curve "rolls-over" to a minimum and 
then rises rapidly, with 09 oc q2 (scaling theory ~2'15) yields co oc qa/~, so that 
d =  2 at d = 3 within the EMA). This roll-over is responsible for the rapid 
rise in N(co) near co~ for p ~ Pc. The dispersion solutions are overdamped 
beyond the first maximum in co(q), signaling the failure of the plane wave 
solution for co >coc. The "fracton" excitations which characterize this 
regime are thought to be localized. ~3~ We have argued ~8) that the plateau 
observed in the thermal conductivity of amorphous materials ~9'16) can be 
understood on this basis. 

This paper sketches the derivation of the fraction dimensionality d in 
Section 2, along with a scaling derivation of N(co) for lattice vibrations on a 
fractal network. Section 3 is concerned with the EMA treatment of N(co), as 
well as the calculation of (r2(t))  and thence D(t) .  Section 4 reviews the 
dispersion relation for lattice vibrations of a percolating network, and 
discusses the character of the solutions. Section 5 summarizes the paper, and 
suggests directions for future investigations. 

2. SCALING DERIVATIONS OF oTAND N(m) 

The scaling theory for the diffusion constant on the percolating network 
was first fully developed by Gefen, Aharony, and Alexander. (17) They 
showed that for the problem of diffusion on random networks ("the unbiased 
ant in the labyrinth"(18-21)), for a single percolation cluster at short times, 

(r2(t))~ oc t  2/~2 +~ ( t )  

Here, the cluster contains s sites within a linear range r~ oc s~/~ and if a is 
the bond length, a < r ( t ) <  (rs, ~p). This implies for the infinite cluster a 
diffusion constant range dependence: 

D(r)  w_ r - ~  (2) 

Following the arguments in Ref. 2, the volume visited on the infinite cluster 
in time t, (rZ(t))  a/2' can be written 

v ( t ) ~ t ~/~2 + ~ (3) 

This means the probability of remaining at the initial (t = 0) site after time t 
is 

(Po(t))  oc [V(t)]-1 ~: t - am+o)  (4) 
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The structure of ~he diffusion equation is such that it can be mapped onto a 
master equation, which in turn has the same form as the free particle 
Schr6dinger equation, the equation of motion for mechanical vibrations, and 
the linearized equation of motion for ferromagnetic spin deviations. This 
enables us to map the eigenvalue density of states for the quantum 
vibrational problem onto the eigenvalue density of states of the diffusion 
problem. The latter can be obtained from the single site Green's function for 
the diffusion problem, t22) 

N(e)  = - ( l / n )  Im(ri0(-e + i0 + )) (5) 

where rio(e) is the Laplace transform of Po(t), the autocorrelation function, 
with e the spectral parameter. 

We find immediately that N(e)oc e x, with x =  [d/(2 + 0 ) ] -  I. The 
spectral parameter e can be related to the energy eigenvalues of the 
vibrational problem by replacing e by ~o z and multiplying by co: 

N(oo) oc oo ~za/(2+~ (6) 

Noting that the form for N(co) in Euclidean space is co a- l ,  Alexander and 
Orbach C2) were led to identify the fracton dimensionality 

J = 2d/(2 + 0) (7) 

They then expressed a~ in terms of d = d - ([3/v) and 0 = (/1 - fl)/v, where the 
probability of being on the infinite cluster P ( p ) o c  ( p -  pc) ~, and the dc 
conductivity= a oc (p  - Pc)". The (then) best values (5) for v,/3, and p led to 
values of d g  4/3, independent of d (for d/> 2). Alexander and Orbach 
conjectured that this relation might be exact, leading to an expression for 
in terms of d, v, and r :  

/.t = �89 [v(3d -- 4) --/3] (8) 

or, from the den Nijs conjecture (4) v = 4/3, and/3 = 5/36, in d = 2, 

la/v = 91/96 = 0.9479... (9) 

The "superuniversal" relationship, ~23) d =  4/3, d >/2, has been challenged for 
d = 2 in a very recent preprint by Zabolitzky, rE4) who calculated the conduc- 
tivity of a random network of resistors and insulators in two dimensions for 
strips of size N • L, with L of the order of several 106, and N up to 350. He 
finds ta/v = 0.973 + 0.005. A similar value [sly = 0.977 + 0.010] has been 
found for a mixture of normal and superconducting bonds in d = 2 [p = s in 
d = 2] by Derrida, Herrman, and Vannimenus. tzS) These results can be used 
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in reverse from Eq. (8) to argue that d =  1.322 + 0.003 and 1.320 • 0.005, 
respectively. A recent paper by Aharony and Stauffer (26) suggests that la/V = 
d - f l / v  = d - 1 below the Euclidean dimensionality d such that d = 2. They 
argue therefore that /a/v= 1 for d = 2, suggesting that c~ = 4/3 only above 
approximately d ~ 2.1. They suggest that Ref. 24 had not executed sufficient 
Monte Carlo steps to reach the asymptotic behavior la/v= 1 for d -- 2. 

On the opposing side, Argyrakis and Kopelman (27) have performed 
random walk simulations at and above the parcolation threshold for two- 
and three-dimensional lattices. They used the Rammal and Toulouse (3) 
suggestion that, at the percolation threshold, the number S N of distinct sites 
visited during an N-step random walk on an infinite cluster varies 
asymptotically as 

See oc N J/2 (10) 

For the square and cubic lattice ( d = 2  and 3), they report a~= 1.331, in 
apparent contradiction with the simulation values found for I.t/v of Refs. 24 
and 25. 

Geometrical arguments have been advanced for d =  4/3 by Rammal 
a n d  Toulouse (3) and Leyvraz and Stanley. (28) The compactness of the visited 
sites (3) for low dimensions (d~<2) led=Aharony and Stauffer (26) to a 
geometrical justification for /a/v = 1 (or d = 1.309 from scaling) at d ~  2. 
For d = 3, they agree with the conclusions of Leyvraz and Stanley. (28) The 
reader is referred to Refs. 26 and 28 for the detailed geometrical arguments. 

From our perspective, there is at least one unanswered question: why do 
the strip simulations (24,25) in d -- 2 show a clear crossover to a value of/a/v 
larger than Eq. (9), leading to t~ < 4/3 [in the Aharony-Stauffer (26) limit, 
lu/v = 1, a~= 1.309] while the diffusion results in d =  2 for the number of 
distinct sites visited of Ref. 27 lead to ~ nearly exactly 4/3 ? We must await 
further numerical treatments for a resolution of this difficulty. 

The principal result of this Section is Eq. (6) with the definition of a~ in 
Eq. (7). It is shown in Ref. 15 that this form for the fracton density of states 
(incidentally, with a~=4/3) fits the higher-temperature portions of the 
specific heat of the epoxy-resins. (9) 

3. EMA CALCULATION OF N(tu) 

The principal difficulty with the scaling results of the previous section is 
that they do not provide us with the insight necessary to connect the lower- 
frequency vibrational density of states for the phonons, Nph(a~ ) oc co d- 1, with 
the higher;frequency vibrational density of states for the fractons, 
Nfr(O~ ) oc cod-1 A smoothness assumption for the force constant and mass, 
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as one changes the length scale through ~p (=_equivalent to increasing co 
through coc) would lead to (s) Nrr(coc)/Nph(coc) = d/d, or a sharp drop in N(co) 
at crossover. This is contradictory to experiment. (9'16) 

This difference in behavior was puzzling until very recent work by 
Derrida e t a / .  (29) They used the EMA treatment of diffusion for bond 
percolation by Webman (12) and Odagaki and Lax, (3~ and performed the 
same trick as described in the previous section to obtain N(co). We reproduce 
their curve for N(co) at d = 3 in Fig. 1. Their result is both surprising and 
gratifying. The two regimes, phonon and fracton, are clearly seen. The slope 
of N(co) in the low-frequency regime is 2, as expected for phonons at d = 3. 
The magnitude of N(co) scales with a velocity of sound proportional to 
( p -  pc) 1/2. At a crossover frequency 

co~ = [d2/2(d - 1 )q ta l l /Z (p-  p~) (11) 

lx10 -2 

I xlO 4 

IxlO 6 
1 x 10 -4 lx10 -z  1 

Frequency 

Fig. 1, The vibrational density of states for the simple cubic lattice percolating network for 
d = 3, as a function of frequency o9, calulated within the effective medium approximation for 
different bond concentrations p. Within EMA, Pc = 1/3 = 0.3333 .... 
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where ~'a is defined in Ref. 29, and is of order unity, a rapid rise in N(co) 
occurs to the fracton value. The latter is a constant, implying a~EM h = 1. 
Their calculations show that in fact ~tEM a = 1 for 2 ~< d ~< 4, consistent with 
the Alexander-Orbach conjecture reltive to the constancy of a~. The actual 
EMA value is not accurate (unity instead of 4/3). This is not uncommon for 
EMA: it often gives the correct physical behavior, but with values for the 
exponents which differ from the correct values. The magnitude of the rapidly 
rising portion of N(co) accentuates as P ~ P c ,  varying as ( p - - p c )  1-~a/2). 
This is clearly seen in Fig. 1 as one moves away from Pc (Pc = 1/d within 
EMA). 

The principal EMA result, the rapid rise in N(og) at o~c, agrees well with 
the Kelham and Rosenberg (9) analysis of the specific heat of the epoxy- 
resins. It is also in striking agreement with the structure often observed in the 
far infrared absorption of glasses and a-Ge. We reproduce in Figs. 2a and 2b 
the Fig. i of Refs. 10 and II ,  respectively. One sees a "knee" in the 
absorption curves for the glasses GeO2, B 203, and SIO 2 in Fig. 2a. This is 
not unlike the EMA shape exhibited in Fig. 1 if d were greater than unity 
(4/3?). That is, there does appear to be a significant decrease in slope for the 
optical absorption (presumably proportional to the vibrational density of 
states) at frequencies above (roughly) 20cm -I  for GeO2, 15cm -I  for 
B203, and 50 cm -I  for SiO2 glasses. There even appears to be evidence for 
a rapidly rising portion, of the same general shape as for the EMA result for 
N(og) in Fig. I. The case of pure a-Ge is less clear, but Fig. 2b does exhibit a 
sudden decrease in slope at roughly 40 cm -~. Note also that no structure 
appears present in the crystalline material at the same frequency. 

It is certainly not obvious why amorphous structures should exhibit 
dynamical properties analogous to percolating networks. Nevertheless, the 
similarities are striking (see Ref. 8 for a fuller discussion). Again, neutron 
diffraction measurements of N(og) in the frequency range between I0 and 
50 cm -~ on amorphous materials would be most interesting. 

In an effort to search for the physical origin of the rapid rise in N(~)  at 
~o c, we compute now the diffusion constant within EMA. We have already 
calculated (rE(t)) analytically within EMA in Ref. 29. Using the realtion (17) 
D ( t )  = �89 we find 

d~(P - Pc) 1/2 xi/2 

where x = t i t  o, and (3" t o = 2 ( d -  1 ) v a / d 2 ( p -  pc)  2. We plot D ( t )  vs. t i t  o in 
Fig. 3. It is seen that no structure is present in the crossover regime (near 
x = t i t  o --- I). The EMA expression for the diffusion constant is proportional 
to t -1/2 at short times, a result first obtained by Webman. (~z~ As t i t  o 
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Fig. 2. (a) Room temperature, far infrared, and microwave conductivity a (or index of 
refraction times absorption coefficient, ha) of selected amorphous materials as a function o 
wave number (or frequency) on a log-log scale. Redrawn from Fig. 1 of Ref. I0. (b) The 
product of nr/ (cm -1) vs. wave number (cm -1) for pure a-Ge. Here, n is the refractive index 
and r / the absorption coefficient. Included are the crustalline density of states for Ge and the 
position of singularities arising from critical points at s X, and L of the Brillouin zone. 
Redraw from Fig. 1 of Ref. 11. 
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Fig. 3. A plot of the diffusion constant D(t)/[d2(p --pc)/(d- 1)], from Eq. (12) in the text. 
The term in curly brackets in Eq. (12) equals (l[df(x)/dxl. 

increases towards unity, D(t) crosses over to a constant, as expected for the 
Euclidean regime. 

Thus, within the same (EMA) approximation, N(co) exhibits a rapid rise 
at crossover, whereas D(t) behaves quite smoothly. The reasons for this 
difference will be explored in detail in the following section. 

4. V I B R A T I O N A L  D I S P E R S I O N  R E L A T I O N  

Figure 1 of the preceding section exhibits strange shapes for the 
vibrational density of states on a percolating network. We examine the 
vibrational eigenstates in more detail in this section in order to understand 
the physical reasons behind the rapid rise in N(co) near co c. A full account of 
this work can be found in the paper by Entin-Wohlman eta/. (31) 

We work in the EMA where the randomly occupied bonds are replaced 
by an "effective" bond of strength I~ which, however, is frequency 
dependent: l~[co(q)], where co(q) is the q-dependent frequency. W itself 
satisfies a self-consistency equation for which we refer the reader to Ref. 31 
for full details. 

The dispersion relations are found from the poles of the Green's 
function. They take the form 

co2(q)  = q2 l,V[co(q)] (13) 
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I~ is complex, so we denote (for q real), 

co(q) = coq -- i5q (14) 

where coq and 5q denote the wave-vector-dependent frequency and decay rate 
of the wavelike excitations, respectively. The full equations for Eq. (13) are 
complicated, so we do not exhibit them here. We do plot the solution of 
Eq. (13) for p near Pc in Fig. 4. The various interesting regions of q are 
examined below. 

4.1. q Small 

We find (p > Pc), 

2 coq ~ [(p -- p~)/(1 -- p~)]qZ 

5q ~ c % [ q d / ( p  - -  p~)] 

(15a) 

(15b) 

3 

2 , 5  i i 

2.C 

p -- 0,339 

1,.5 

1.0 

0.5 

I 

0 0,5 1.0 1,5 

q/qc 
Fig. 4. A plot  of the real  and i m a g i n a r y  par ts  of  o9, COq, and  6q, respect ively,  vs. q for d = 3. 

Here,  p = 0.339 and o~ c = 0.0104. The cr i t ica l  perco la t ion  concent ra t ion  Pc = 1/3. 
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That is, the dispersion law for small q (large length scale) is that of phonons, 
coq ~ csq, with a sound velocity c, scalling as ( p  - pc)i/2. The decay rate in 
this limit is much smaller than coq so that the excitations are well defined. 
However, this holds only for p > Pc and for small q such that 

2 qZ < q~, qc = 2 ( p  _ p~)/pc ~, e (16) 

4.2. q in the Vicinity of qc 

From Fig. 4, we see that coc as defined by Eq. (11) represents the 
maximum value of co in the phonon regime (i.e., for q < qe). Further, the 
decay rate [i.e., the imaginary part of co(q)] increases remarkably fast. For 
q > q~, 6q ~> coq. This means that the poles of the propagator, Eq. (13), do 
not lie close to the real axis, and hence do not describe a physically 
accessible excitation spectrum. The frequency co~ was shown in Section 3 to 
mark the crossover between the phonon and fracton portions of the 
vibrational density of states, within the EMA. Our calculation shows that at 
frequencies less than co~, or q < q~, the plane wave representation which 
yields a dispersion law of co = e s q  is indeed meaningful. However, as q 
increases beyond qc, the decay rate 6 o increases sharply. Consequently, the 
plane wave representation is no longer adequate. We note that this 
breakdown of the plane wave representation occurs at q of the order of qc, 
which itself scales as ( p  - p~)1/2. As shown in Ref. 29, this is related within 
EMA to the excitation length scale equaling the connectivity length of the 
percolation problem, in accordance with the conclusions of Ref. 2. That is, 
1/q~ ~ ~p, the percolation correlation length. Hence, ~p sets the length scale. 
For 1/q > ~p, one is in the phonon regime. For 1/q < ~p, one is in the fracton 
regime. 

4.3. q Large 

It is clear that q is not a useful representation in this regime. Rather, we 
recognize that a "damping length" l can be associated with 

1/2/(co) = tim [co/(~,P(co))1/z It (17) 

from Eq. (13). From Ref. 31, this leads to the relationship 

co = coe + [graPe/8(1 - Pc)] 1/2(1/12) (18) 

It is interesting to note that the scaling arguments of Ref. 2 lead to the 
relation within the fracton regime, 

cofr(l ) or l-~/a (19) 
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Noting tha t  dEM A = 2, dEMA = 1 at d =  3, we see that the explicit EMA 
fracton dispersion law is in=agreement with the scaling form if one utilizes 
the EMA values for d and d. 

We are now in a position to analyze the density of states as exhibited in 
Fig. 1. One sees that the sudden rise at toc is associated with the "flat" 
dispersion regime at co c. It is the near vanishing of dto/dq near to e which 
generates the rapid rise in N(co) at to~. The finite imginary part 8 0 causes the 
pole of the propagator to lie off the real axis, thereby avoiding a divergence 
at toe. The closer one is top~,  the smaller is 6q at toc, and the more rapid the 
rise in N(to) at toc- 

Neutron diffraction experiments to measure the dispersion law of 
amorphous materials will be difficult because of the rapid rise in ~q with q. 
As a first try, however, it would be useful to see if (at the least) 5q were 
found to increase according to Eq. (15b). We wish to emphasize that there is 
no lifetime damping of the phonons or fractons in this calculation: rather, it 
is a wave vector damping associated with the failure of a plane wave 
description. Fixing the momentum transfer, as one does in a neutron 
diffraction experiment, causes a breadth in the measurement of COq. It would 
be of great interest to follow the predictions of Eq. (15) as far as one can 
into the to, q plane before the damping becomes excessive. 

5. S U M M A R Y  

The preceding sections have explored the three dimensions which 
appear to be required for a full description of fraction dynamics, d, d, d. The 
percolating network was chosen as a " laboratory" to examine not only an 
explicit fracton excitation spectrum, but also the crossover from Euclidean to 
fractal space. The conjecture (2) that a~---4/3 now appears to be off by ~ 2 %  
at d = 2, (24'25) but may be exact for d such that d>/2 .  (26) 

The vibrational density of states crosses over from co a -  1 to (2) ~- 1 as one 
crosses over from Euclidean to fractal space, with a concomitant crossover 
in the excitation spectrum from to ~ Csq to to oc l -a/~ where l represents the 
length scale of the fracton excitation. For t~ < 2, Rammal  and Toulouse (3) 
have shown that the fractons are localized spatially, so that such a 
description of the fracton regime is appropriate. 

We introduced an effective medium approximation in order to more 
fully explore the crossover properties of the density of states and the 
dispersion law. Remarkably, we discovered (29) a sudden rise in N(m) at the 
crossover frequency r c. This was shown in Section 4 to be caused by the 
peculiar ("roton"-like, but highly damped) flattening off of the dispersion 
curve at co c, with a subsequent drop and rise in to(q) as one passes into the 
fracton regime. (1) 
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These results are suggestive of an explanation for the nearly universal 
structure of the specific heat and thermallconductivity of amorphous 
materials. (9'16) All seem to exhibit an N(09) which rises steeply at relatively 
low energies (e.g., ~8-12  K for the epoxy-resins), and a plateau in the 
thermal conductivity in roughly the equivalent temperature regime. The 
localization of the fracton excitations ~3) can be regarded as an explanation 
for the near-zero phonon mean free path above the same low energy, as 
extracted from conventional analysis for nearly all amorphous materials. 

We are unable to explain why amorphous materials should exhibit 
fracton excitations in their vibrational spectra. Such behavior requires the 
existence of a characteristic length scale, below which the structure 
participating in the dynamics is self-similar. At present it appears difficult to 
explore the length scale issue directly by other means. 

Optical infrared absorption in amorphous structures is another 
technique for probing N(co). "Impurity-induced" absorption is maximal so 
that the optical absorption profile should mirror N(co). Where experimental 
results are available, structure appears to be present which is not inconsistent 
with the EMA predictions for N(co) on a percolating network. (1~ 

It is possible to apply the EMA procedures to percolating ferro- and 
antiferromagnets. The former follows directly from the vibrational solutions 
because the eigenvalue equation is identical (with the exception of the 
spectral parameter). ~33) The latter requires a separate EMA calculation 
which has recently been carried out by Yu and Orbach. (34) They find that 
the rapid rise in N(09) near a~ c for lattice vibrations is absent for 
antiferromagnetic spin excitations. Rather, only a rather smooth crossover 
takes place between the long-length-scale magnon and short-length-scale 
fraction regimes. This distinctively different behavior should be found in 
neutron diffraction experiments which measure N(oJ) in the vicinity of a~ c. 
Such experiments are easier than for lattice vibrations because co c scales as 
( p  - p c )  2 for magnetic excitations. Thus, one need not have to work so close 
to Pc for magnetic materials as for vibrational spectra in order to observe the 
interesting features of N(09). 

In conclusion, we have tried to present a description of the physics of 
fractal excitations, both from a scaling and an EMA calculation for the 
percolating network. Our results are applicable to vibrational and spin-wave 
excitations, as well as for a certain class of tight binding electrons. We await 
specific experimental tests of our predictions. 
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